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Abstract

Research on the division of cognitive labor has found that adults and children as young as age

5 are able to find appropriate experts for different causal systems. However, little work has

explored how children and adults decide when to seek out expert knowledge in the first place. We

propose that children and adults rely (in part) on “mechanism metadata,” information about mech-

anism information. We argue that mechanism metadata is relatively consistent across individuals

exposed to similar amounts of mechanism information, and it is applicable to a wide range of cau-

sal systems. In three experiments, we show that adults and children as young as 5 years of age

have a consistent sense of the causal complexity of different causal systems, and that this sense of

complexity is related to decisions about when to seek expert knowledge, but over development

there is a shift in focus from procedural information to internal mechanism information.
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1. Introduction

Would you need help from an expert to repair the engine of a 747? Not to underesti-

mate the capabilities of our readers, but we expect that for most of you the immediate

and intuitive answer is “yes.” Most of you will likely reach this conclusion while know-

ing very little about how airplane engines work, the structure of their internal mechanism,

their materials or construction, etc., and yet you know something about them that tells

you that you could not simply figure it out on your own. Contrast this with the same intu-

ition about a clock. You might have an equally limited idea of the details of the internal
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mechanism of a clock, but at the same time, your likely intuition is that you would need

much less assistance to repair one.

These intuitions present an intriguing puzzle. On one hand, they seem to indicate some

understanding of the causal systems in question. On the other hand, that knowledge seems

to be sorely lacking in concrete details. Ask yourself, for example, how an electric-pow-

ered analog clock differs from a pendulum-powered one, or what components are shared

between a clock and a watch. Relying entirely on your own knowledge, these questions

are probably very challenging to answer. Even so, you have a clear sense that you would

need less help to fix a clock than a jet engine. What exactly is it that you know, then?

Several studies have investigated how children and adults select which experts to defer

to, and how these experts are evaluated. However, little work has explored the question

of what prompts us to look for help in the first place. Nonetheless, in reviewing research

on how children and adults defer to relevant experts, there are hints as to the kind of

knowledge that is used to determine when to defer as well.

1.1. The division of cognitive labor

Children and adults rely extensively on networks of distributed knowledge (Mills,

Legare, Grant, & Landrum, 2011; Sparrow, Liu, & Wegner, 2011; Wilkenfeld, Plunkett,

& Lombrozo, 2016), and they demonstrate an early-developing ability to identify which

experts are relevant to the task at hand. Previous work has found that, by age 5, children

have a basic understanding of how broad domains of knowledge are clustered in the

minds of other people (Danovitch & Keil, 2004; Keil, Stein, Webb, Billings, & Rozenblit,

2008). Even preschoolers will judge that a car mechanic is more likely than a doctor to

know about how to build a tree house (Lutz & Keil, 2002). For more specific objects,

younger children can infer who will know how to fix an object, versus what a novel

object is called, on the basis of the kinds of knowledge each expert has demonstrated pre-

viously (Kushnir, Vredenburgh, & Schneider, 2013).

In these previous studies, the primary goal was to determine whether children were

sensitive to information about informants. Children use a diverse array of information

about informants when deciding whom to defer to, ranging from relevant factors like past

accuracy (Koenig & Harris, 2005) to irrelevant features like niceness (Landrum, Mills, &

Johnston, 2013). However, this body of work also implicitly shows that children know

something about the causal systems for which they are seeking expert knowledge. For

example, in order to understand that a mechanic will know more than a doctor about how

to build a tree house (Lutz & Keil, 2002), young children must know something about

the knowledge of the mechanic and the doctor, but also something about the process of

building a tree house. Children may not know exactly what is required to build a tree-

house, or how to construct one, but they must know something that allows them to say

that a mechanic’s body of knowledge is more relevant to the task than a doctor’s. As they

grow older, children draw on more elaborated expectations about the kinds of processes

that are responsible for entities and mechanisms in broad domains (Keil et al., 2008).
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In addition to knowing whom to defer to, children (and adults) must have some sense

of when expert knowledge is needed in the first place. One obvious way to determine the

need for help is to experience failure. Indeed, children will defer to an expert when they

have attempted something and failed (Vredenburgh & Kushnir, 2015). However, to deter-

mine whether you needed help to fix a jet engine, you (presumably) did not go find a bro-

ken jet engine and attempt to repair it. Thus, there must be ways to recognize when

deference to an expert is appropriate based on more limited knowledge and experience.

What, then, does one need to know?

One way to assess the need for deference is to learn more about the experts who typi-

cally interact with a given system or entity and to examine the qualifications involved.

For example, rather than knowing anything about jet engines, one might know that the

people who typically repair jet engines undergo extensive training and certification, and

from that information infer that one could not figure things out on one’s own. With reli-

able indicators of training and needed qualifications, it may be relatively easy to infer

one’s distance from those levels of expertise.

However, knowledge about training and qualifications of particular experts may be dif-

ficult to acquire and generalize, especially for young children. When, for example, is a

child likely to encounter information about training and certification of jet engine techni-

cians? In addition, to be able to use such information for a wide range of devices and

causal systems, one needs to know who is specifically responsible for interacting with

each of those devices and systems. Generalizations cannot be made without also knowing

something about the causal patterns involved. One could, for example, extrapolate from

the expertise required for one device, such as refrigerators, to make inferences about

another, such as air conditioners, but even this inference requires being able to recognize

that the two devices share some causal mechanistic properties, and therefore requires

some information about the causal systems in addition to the experts. Therefore, to under-

stand how people determine when they will need help, we should determine what they

know about these causal systems.

1.2. Causal mechanism knowledge (and the lack thereof)

While causal knowledge has been studied in many forms, little work has been done on

the type(s) of knowledge that could support decisions about when help is needed.

Humans are certainly adept at inferring causal relationships from an early age. Children

are able to predict outcomes of novel causal events as early as 8 months of age (Sobel &

Kirkham, 2006) and less than a year after that can make successful causal interventions

(Gopnik, Sobel, Schulz, & Glymour, 2001; Gopnik et al., 2004), even for causal relation-

ships defined by abstract relational properties (Walker & Gopnik, 2014). However, causal

learning from statistical information would not necessarily support intuitions about

whether (and which) expert knowledge is required, at least not on its own. In order to

solve the problems of deference described above, we need some knowledge of the means
by which a cause brings about an effect, that is, its mechanism (Ahn, Kalish, Medin, &

Gelman, 1995). Merely knowing that the causal relationship exists does not entail any
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knowledge of its internal mechanism. Indeed, previous work has made it clear that chil-

dren do not require mechanism information to infer that a causal relationship exists (e.g.,

Schulz, Gopnik, & Glymour, 2007).

Even if children do not need information about mechanism to infer causal relation-

ships, children nonetheless ask for mechanism information about things they encounter

starting around 3 years of age (Callanan & Oakes, 1992) or even earlier (Hood & Bloom,

1979), and often persist in their inquiries until they receive a mechanism-oriented

response (Chouinard, 2007; Frazier, Gelman, & Wellman, 2009). This preference for

mechanism-based explanations continues into adulthood (e.g., Ahn et al., 1995; Johnson

& Ahn, 2015). If we knew the mechanism underlying the function of a device or biologi-

cal system, it would be relatively straightforward to determine if we would need help

understanding it. Therefore, if the early-developing interest in mechanism translated into

a deep understanding of the underlying causal systems, that understanding could be a

valuable basis for intuitions about when help is required.

Unfortunately, while laypeople often believe they have such detailed causal under-

standings, they usually do not. This phenomenon is known as the Illusion of Explanatory

Depth (IOED) (Alter, Oppenheimer, & Zemla, 2010; Rozenblit & Keil, 2002; Sloman &

Fernbach, in press). Major gaps in adult causal knowledge occur not just in recall but also

in recognition. For example, many adults fail to recognize the difference between a sche-

matic of a functional bicycle and one that is completely inoperable (Lawson, 2006). Chil-

dren show such illusions of understanding to an even greater degree than adults (Mills &

Keil, 2004).

Despite these limitations, some kind of information about mechanism seems to persist:

Mechanism information influences causal reasoning (Ahn et al., 1995; Schlottmann,

1999), and mechanism may constrain Bayesian causal learning by reshaping priors about

what causal links exist or how strong they are (Griffiths & Tenenbaum, 2005, 2009).

Thus, some aspects of mechanism information are preserved, but they are neither detailed

nor complete (e.g., DiSessa, Gillespie, & Esterly, 2004; Straatemeier, van der Maas, &

Jansen, 2008; Vosniadou, 2002). So, if most individuals do not retain deep, integrated

mechanistic understandings of “the way things work” (e.g., Macaulay, 1988), what kind

of information about mechanism persists, and how does it support intuitions of when to

seek out expert knowledge?

1.3. Mechanism metadata

Even if one does not have a detailed understanding of the mechanism that enables a

car to move, one may know, for example, that the mechanism involves metal and plastic

rather than organic parts, that it involves the transfer of mechanical force, and that accel-

eration is not instantaneous. In other words, even if one does not know the details of how

the mechanism works, one may still know roughly how much “stuff” is in the mechanism

and have some ideas about the nature of that “stuff.”

We can describe this type of knowledge as “mechanism metadata.” Metadata simply

means information about information. The term is most commonly used in the domain of
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web design; in addition to the content of the page which is visible to the user, most web-

pages also contain “metadata” in their code which are invisible to the user but available

to search engines, to allow those pages to show up in searches for terms that may be rele-

vant but that are not actually contained in the content of the page itself (Zhang & Dim-

itroff, 2005). Webpage metadata is a convenient analogy for our purposes, as we propose

that mechanism metadata supports the search for information in the minds of others.

This metadata may take many forms. For example, simply knowing what ontological

category a causal system belongs to (e.g., artifact or natural kind) is a form of mechanism

metadata, as it is information about the mechanism that requires few or no concrete

details of the mechanism. More sophisticated examples might include ideas about rough

causal structures (e.g., that a car is a common-cause structure, centered around the

engine). The best candidate form of metadata for determining the need to defer may be

summary information, that is, a sense of approximately how much “stuff” is in a causal

mechanism and how diverse that “stuff” is.

Although mechanism metadata does not require detailed mechanism knowledge, it is

strongly compatible with fragmentary mechanism knowledge. For example, for the com-

mon-cause structure described above, one must know about the existence of an engine,

and the parts to which an engine ultimately connects (e.g., the wheels), even if one has

sparse ideas concerning the intervening components and their causal interactions.

Notably, mechanism metadata should be distinguished from just fragmentary mecha-

nism knowledge, or more unspecified “stuff we know about things.” Rather, mechanism

metadata is made up of specific types of information that share specific properties. In this

initial proposal we do not attempt to construct a comprehensive taxonomy of different

types of mechanism metadata, nor will we attempt to describe in any detail the cognitive

processes that give rise to mechanism metadata. Rather, our goal is to specify two key

properties that define certain information as mechanism metadata and focus on the

observable features those properties entail.

First, mechanism metadata should be relatively consistent across individuals with simi-

lar amounts of exposure to a given causal system. If mechanism metadata is extracted

from the search for information about a causal system (its mechanism or its behavior),

then assuming that the information that different people are exposed to is reasonably

accurate and at a similar level of detail, the retained mechanism metadata should be simi-

lar even if the (largely forgotten) details were different. For example, one person could

receive information about the steering system in a car and another about the brakes, and

either way much (but not all) of their resulting metadata knowledge would be the same

(device, transfer of force from driver to mechanism, etc.). Thus, for populations that have

been exposed to similar amounts of information at similar levels of detail, we should

expect considerable consistency in the mechanism metadata they possess.

More broadly, this point highlights that mechanism metadata is not just a collection of

fragmentary details, but rather some form of abstraction from those details. Indeed, when

people demonstrate holes in their mechanistic knowledge, there is some variability in

what they get right and what they seem to be missing (e.g., Lawson, 2006, Fig. 3 and

Table 1). So, if metadata were simply a collection of people’s fragmentary knowledge, it
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would show little consistency across individuals. Finding consistency therefore provides

evidence for metadata as a separate kind of information. However, different populations

that receive different amounts or levels of detail in their mechanism information (for

example, children versus adults, or experts versus laypeople) might end up with different

metadata.

Second, we should expect people to have mechanism metadata for virtually every cau-

sal system they encounter. For example, while the metadata for artifacts and natural kinds

would likely differ in content (e.g., kinds of material substrates or causality), the metadata

should not differ in amount or type. This much follows from our definition of mechanism

metadata. The types of metadata we suggest should apply equally to artifacts and natural

kinds, indeed to almost all causal systems. Most causal systems belong to an ontological

category, have some overall density of structure, some number of components, some

diversity of components, etc.

This constraint distinguishes our proposal from an obvious alternative: If we do not

make decisions about deference on the basis of domain-general metadata, then we must

use domain-specific or idiosyncratic information. For example, one could propose that

people use “price” to guide deference to experts when dealing with artifacts. However,

information like “price” would not help guide deference for most biological systems. The

key feature of our proposal is that there is something domain-general that supports defer-

ence in all domains, and it is that which we intend to test.

This constraint also distinguishes mechanism metadata from being simply “stuff we

know about things” by specifying that consistency alone is not sufficient. There are some

types of information about some causal systems where you might find great consistency

in lay judgments (e.g., price, longevity), but that do not apply across every causal system.

As such, consistent domain-specific judgments provide an excellent alternative hypothesis

to mechanism metadata, but are importantly different.

Assessment of metadata intuitions is distinct from assessing information that people

retain about detailed mechanism knowledge. In some respects, partial assessments along

these lines already exist. For example, there is evidence for ontological category meta-

data by age 5, in that 5-year-olds show some ability to match biological insides to ani-

mals and device-like insides to machines (Gelman & Wellman, 1991; Gottfried &

Gelman, 2005; Simons & Keil, 1995). Notably, to make these identifications, they

matched images of biological systems and mechanical systems to different causal sys-

tems, even though the mechanisms portrayed were, in their details, totally inaccurate to

the system. Indeed, even 8-month-old infants seem to possess rudimentary metadata of

this sort, in that they expect objects that are self-propelled and behave like living

things to have insides, that is, to not be hollow (Setoh, Wu, Baillargeon, & Gelman,

2013). Thus, in searching for the types of mechanism metadata that help us decide

when it is necessary to find expert help, one straightforward and developmentally

viable method is to probe the metadata as directly as possible, while showing that it is

related to decisions about when to defer. Here, we focus on metadata related to com-

plexity intuitions.
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1.4. Causal complexity

One type of mechanism metadata stands out as an especially strong candidate for

enabling children and adults to determine when they will need help: the degree of causal

complexity of a mechanism. For our purposes, we will define causal complexity as an

intuitive, approximate sense of the number and diversity of components in the mechanism

of a causal system. If a causal system is judged to be more causally complex, it is more

likely that one will need to defer to an expert to interact with it successfully.

Recent work has suggested that children and adults represent this kind of complexity,

and relate it to the observed behavior of a causal system. Children as young as 4 will

match images of more complex internal components (more and different components)

with objects that have a greater number and/or diversity of behaviors (Ahl & Keil, 2016;

Erb, Buchanan, & Sobel, 2013). It is important to note the renderings of “complexity” in

these studies had no relation to the actual mechanism involved, thus ruling out detailed

mechanism knowledge as an explanation for this performance. Indeed, this sense of cau-

sal complexity may not always be an accurate sense of the real number and diversity of

parts within a given causal system. Even if this form of mechanism metadata is based on

exposure to mechanism information, laypeople may not be exposed to enough informa-

tion to accurately extract a sense of causal complexity, or they might fail to recognize

non-obvious sources of causal complexity or oversimplify inferred mechanisms based on

na€ıve causal theories (e.g., Grotzer & Tutwiler, 2014; Hmelo-Silver, 2004; Jacobson,

2001; see also http://xkcd.com/1425/).

Nonetheless, we should expect this sense of causal complexity to be applied broadly to

a wide range of causal systems, and we should also expect it to be relatively consistent,

at least within a given population. It is less clear whether it will be consistent across pop-

ulations, or at what age it starts to be consistent. Very young children, who may be

exposed to simplified mechanism metadata in idiosyncratic ways, might not extract mech-

anism metadata that is as consistent as school-age children or adults. Indeed, 4-year-olds

may not even recognize complexity in the same way that older children do (Ahl & Keil,

2016).

Between childhood and adulthood more broadly, there may be some major shifts in

what is seen as complex, as the underlying causal knowledge expands and becomes more

sophisticated. Even in adults, expertise can reveal hidden complexity behind seemingly

simple causal systems (e.g., Shtulman & Valcarcel, 2012). For example, a refrigerator

seems simple (if opaque) until you understand the principle of the conservation of energy,

at which point it becomes clear it cannot simply be generating “cold” (a concept that

becomes yet more challenging when you understand what temperature actually repre-

sents). Given the potential for developmental changes in mechanism metadata knowledge,

it is therefore useful to examine the development of this sense of causal complexity,

especially in relation to decisions about when help is needed, particularly because such

decisions may be multifaceted.

Thus far, we have only discussed decisions about when one would need help to fix

something, but children are rarely required to fix things on their own. However, children
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more often require help simply using many causal systems that adults can use without

supervision. Seeking help for fixing may therefore be linked to different intuitions than

seeking help for using. One may not see any need for help in using a refrigerator, but a

need for help in fixing one. Conversely, one may need help to use chopsticks, but no help

to fix them. Between these reasons and changes in exposure to mechanism information

over development, there may be some developmental shifts in how complexity intuitions

are grounded and linked to judgments about when help is needed.

However, the relationship between complexity and judgments of when help is needed

could, in certain cases, be bidirectional. In particular, when laypeople have information

about the degree of expertise needed to fix or use a mechanism but little information

about the mechanism itself (e.g., a nuclear reactor), then the sense of how much “stuff”

is in the mechanism could be influenced by this deference information. That is not to say

that this deference information is itself a form of metadata. Rather, metadata as we have

proposed it takes input from whatever information happens to be observable for a given

mechanism, which in some cases may include need for deference, and metadata can then

be used to “fill in” unobserved information. This is not only true of deference, the same

bidirectional relationship could exist for other inputs to mechanism metadata. For exam-

ple, previous work on complexity used observable behavior to guide inferences of internal

complexity (Ahl & Keil, 2016; Erb et al., 2013), but in cases where something is known

about the internal mechanism but nothing about the behavior (e.g., until recently, the

Antikythera mechanism), more complex internal mechanism might suggest more complex

observable behaviors.

1.5. The current experiments

Here, we present initial evidence for the existence of causal complexity metadata that

is closely related to judgments of when to seek help. We set out with three goals for

these experiments: first, to establish whether children and adults make consistent judg-

ments of complexity in the domain of artifact devices, or if such judgments are idiosyn-

cratic; second, to show that these judgments of complexity are related to judgments about

when to seek expert help; and third, to show that this sense of complexity fulfills all of

the criteria we set forward for mechanism metadata, being consistent between individuals,

largely impervious to context, and applicable across a broad range of causal systems.

Across all of these goals, we examine the development of this sense of causal complexity

over middle childhood and into adulthood, to determine if there are notable or consistent

shifts in what is seen as complex, how it relates to deference, or how consistent complex-

ity judgments are at different ages.

Experiment 1 directly asks whether children ages 7–10 and adults possess this sense of

causal complexity, and whether it is related to judgments of when help is needed. Previ-

ous work has found that children’s understanding of both causal systems and the division

of cognitive labor changes substantially in this age range (e.g., Danovitch & Keil, 2004;

Keil et al., 2008; Mills & Keil, 2004). Thus, we might expect that we could capture simi-

lar developmental effects in a form of knowledge that is connected to both understanding
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causal systems and deference to expert sources. Experiment 1 is designed to test, through

measures of scale reliability, one of our criteria for this sense of causal complexity as a

form of mechanism metadata, that is, testing whether it is consistent across individuals

with similar amounts of knowledge. In addition, we examine whether these judgments of

complexity correlate with judgments about when help is needed to interact with a causal

system, either to interact with its internal mechanism, or simply to use it.

Experiment 2 further explores the nature of this sense of causal complexity, and

whether it fits our definition of mechanism metadata, by testing whether adults apply it

across very different causal systems. As a form of mechanism metadata, it should be

applicable to any causal system, not just artificial devices. So we extend the complexity

task from Experiment 1 to a new domain (human body parts). Above and beyond testing

whether this mechanism metadata can be applied to these different domains of causal sys-

tems, we also test the stability of this sense of complexity, by presenting the items in

these different domains as either a mixed list or two separate lists, to determine whether

these judgments are robust across different contexts, or if they are made ad hoc to the

particular set of items at hand. This immunity to context effects is important—if com-

plexity judgments are subject to context in this way it would suggest that those complex-

ity judgments are capturing domain-specific rather than domain-general information, even

if we find consistency within a domain.

Experiment 3 expands on Experiment 2 by testing whether children also have a consis-

tent sense of the complexity across different domains, particularly domains in which cer-

tain types of deference are irrelevant (i.e., you cannot ask for help using body parts).

Furthermore, we examine how early this sense of complexity shows the consistency we

find in adults. Using a subset of the items from Experiment 2, we elicited complexity

judgments from 7- to 10-year-olds and also 5–6-year-olds, to see whether younger chil-

dren, who may have more limited and idiosyncratic exposure to mechanism information,

have as consistent a sense of the complexity of these items as older children and adults.

2. Experiment 1

Experiment 1 had three goals: first, to demonstrate the existence of a sense of causal

complexity that fits our description of mechanism metadata, by showing that children and

adults make consistent judgments of the complexity of different causal systems; second,

to determine whether this sense of complexity is in fact related to decisions about when

help is needed; and third, to determine how this sense of causal complexity relates to

decisions about when to defer, and whether this relationship changes between children

and adults.

We took the 16 most commonly mentioned devices from several datasets in the

CHILDES utterance database and asked adults and children ages 7–10 to rate the devices’

causal complexity, how much help they would need to fix the objects if they were bro-

ken, or how much help they would need to use the objects for their intended purpose.

We consider “help needed to fix” as a measure of the need for deference for internal
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mechanism information, and “help needed to use” as the need for deference for what we

might call procedural information. To test whether complexity is indeed tied to deference,

we simply correlated complexity ratings with these two deference scales.

Because this initial exploration used correlational measures, we cannot firmly establish

a causal relationship between complexity judgments and decisions of when help is

needed. In Experiment 1, our goal was to demonstrate the existence of complexity meta-

data that is consistent across individuals and to demonstrate that it is related to judgments

of when deference is needed, while leaving deeper investigations of the direction of influ-

ence for future work.

2.1. Methods

2.1.1. Participants
We recruited 60 adults from Amazon Mechanical Turk. Adult participants received

modest monetary compensation for a roughly 10-min experiment. For our child age

groups, we recruited 79 7–8-year-olds (34 male, 46 female) and 62 9–10-year-olds (29

male, 33 female) from elementary schools in neighboring towns as well as a local chil-

dren’s museum. All child participants were rewarded with a certificate of appreciation

and a small toy.

2.1.2. Stimuli
Stimuli were created from the CHILDES database (MacWhinney, 2000), specifically

the Cartarette, Warren, and Evans datasets. These datasets were chosen because they rep-

resent the utterances of children in or slightly younger than the age groups examined in

this study, they were within all from 20 years of when the experiments were conducted,

and they all have morphological tags. The Cartarette dataset consisted of elicited speech

from children ages 6, 8, 10, and adults (utterances by adults were not analyzed), dis-

cussing their everyday lives. The Warren dataset was built from recordings naturalistic

interactions between a parent and child (ages 2–6, but only ages 4–6 were used in this

analysis) at home. The Evans dataset was built from recordings of naturalistic interactions

between pairs of 6–8-year-old children at school. This broad spread allowed for a very

general sense of which objects were frequently discussed by children. Using the CLAN

analysis software, lists of nouns and frequency counts were extracted. We selected the 16

most frequently occurring nouns that referred to devices with electronic and mechanical

components. Stimuli for this experiment can be found in Table 1. In addition, there were

four filler items that were not included in the final analysis. These four items (boomerang,

gyroscope, broom, and bean-bag chair) were an exploratory set of stimuli for a future

project and were not anticipated to have any impact on the ratings of the other items (see

also Experiment 2).

2.1.3. Procedure
Participants were randomly assigned to one of three conditions: Complexity, help

needed to fix the object if it were broken (henceforth FIX), and help needed to use the
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object for its intended function (henceforth USE). Participants in the Complexity condi-

tion were asked to rate “How complicated is this object in terms of how it works?” on a

0–100 scale going from “very simple” to “extremely complex,” represented as a slider

that always started at 0. In the FIX condition, participants were asked, “How much would

you need help with in fixing this object, if it didn’t work at all?” on a 0–100 scale from

“I could do it all on my own” to “I couldn’t do any of it on my own.” Child participants

also had the midpoint labeled “I could do about half of it on my own.” In the USE condi-

tion, adult participants were asked, “How much would you need help with using this

object for its primary function?” and child participants were simply asked, “How much

would you need help with using this object?” using the same rating scale as the FIX con-

dition. Notably, the wording of the FIX and USE scales left little room for interpretation.

For a child, “fixing” a television could be as little as changing the channel, but specifying

“fixing it if it didn’t work at all” pushed the question much more toward the internal

mechanisms of the object.

Adults and children in the FIX and USE conditions completed four training items to

familiarize themselves with the scale before answering the question for the 20 test items.

For adults, the training items asked how much help they would need to cook a hardboiled

egg, how much help they would need to cook a cheese souffl�e, how much help they

would need to put a band-aid on a cut, and how much help they would need to conduct

quadruple bypass surgery. For children, the training items were how much help they

would need to make a jelly sandwich, how much help they would need to make fried

chicken, how much help they would need to draw a flower, and how much help they

would need to paint the Mona Lisa.

Table 1

Stimuli generated from CHILDES data

Devices Body parts

Airplane* Arm*
Camera* Blood

Car* Elbow

Clock Eye*
Flashlight* Finger*
Microphone Hair*
Microscope Heart

Radio Knee

Scooter Nose*
Stereo Shoulder

Submarine* Skeleton*
Telephone* Throat*
Television* Thumb

Truck* Toe

Vacuum cleaner Tongue

X-ray machine Teeth*

Note. Only device items were used in Experiment 1. * = items seen by children in Experiment 3 (children

saw all device items in Experiment 1).

J. F. Kominsky, A. P. Zamm, F. C. Keil / Cognitive Science (2017) 11



In addition, prior to these training items, children in all three conditions received a

brief training on how to use the slider, involving an illustration of a jar and a scale that

went from “Empty” at one end to “Full” at the other. There were three of these training

items, and the jars displayed were always somewhere in between completely full and

completely empty, to train children to use all of the scale rather than just the endpoints.

For adult participants, all test items were presented one at a time in random order in

an online Qualtrics survey (Qualtrics, 2005). For child participants, items were presented

one at a time in random order using a very similar Qualtrics survey presented on an iPad,

using the iPad’s built-in web browser. Notably, for children, the scale had no visible

numerical values, as we felt that children would find this distracting. Children’s responses

were recorded by where they placed the slider on the scale, which could be done by drag-

ging the slider with their fingers or tapping the point on the scale where they wanted the

slider to go. For child participants, the experimenter read the question aloud for each item

(e.g., “How much help would you need with fixing an airplane, if it didn’t work at all?”).

2.2. Results

Children were grouped into 7–8-year-olds and 9–10-year-olds for analysis.1 We omit-

ted child participants who failed to rate the “full” jar higher than the “empty” jar on the

initial scale training items. Seven 7–8-year-olds were excluded from analyses, three for

failing this exclusion criterion and four due to a software error. Three 9–10-year-olds
were excluded, one for previously participating in a pilot version of the experiment and

two for failing the exclusion criterion. We planned to apply a further exclusion criterion

to all age groups to remove anyone who could not use the scale, operationalized as hav-

ing a standard deviation of less than 10 (on a 100-point scale), which would indicate that

they gave the same response (or very nearly the same response) to every single item. No

participants were excluded based on this criterion in this experiment.

The final Ns were as follows: Complexity, 24 7–8-year-olds, 20 9–10-year-olds, and
22 adults; FIX, 25 7–8-year-olds, 20 9–10-year-olds, and 20 adults; USE, 24 7–8-year-
olds, 19 9–10-year-olds, and 18 adults. The means for each item and scale are presented

in Fig. 1a–c.

2.2.1. Scale reliability
To test whether this sense of complexity is consistent across individuals with similar

levels of knowledge, we used measures of scale reliability. Scale reliability was calcu-

lated as Cronbach’s a. Generally, a scale with Cronbach’s a ≥ 0.7 is considered to be

internally reliable (Cronbach, 1951). However, because Cronbach’s a can be inflated by a

large number of items (Cortina, 1993), a second measure of reliability was used to vali-

date these results: the average single-measure intraclass correlation coefficient (ICC). The

ICC is often used as a measure of inter-rater reliability with continuous scales (Bartko,

1966), and it can be tested in an F test against a null hypothesis value of 0, though the

exact strength of ICCs can be difficult to interpret (Weir, 2005).

12 J. F. Kominsky, A. P. Zamm, F. C. Keil / Cognitive Science (2017)
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Fig. 1. (a–c) Average complexity (a), FIX (b), and USE (c) ratings for each item in Experiment 1, by age

group. Note that each graph is arranged in order of adults’ average rating, but this order is not the same for

each measure. Error bars represent � 1 SEM.
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The alphas and ICCs for all three scales in each age group can be found in Table 2.

Both children and adults showed good reliability for all three scales. All alphas were

above the reliability threshold of 0.7 for every age group (range 0.706–0.924), and all

ICCs were significant and of low to moderate strength (range 0.131–0.545, all ps < .001).

2.2.2. Correlations with complexity
Ratings were averaged for each item by condition and age group. Each age group was

examined separately. First, we examined whether there was an overall correlation

between these three scales. For each age group, there was a significant positive correla-

tion between complexity and FIX (7–8-year-olds: r = .891, 9–10-year-olds: r = .750,

Adults: r = .890), and complexity and USE (7–8s: r = .917, 9–10s: r = .897, Adults:

r = .808), as well as a significant correlation between FIX and USE (7–8s: r = .858, 9–
10s: r = .843, Adults: r = .801), all ps < .001. In short, we can safely say that judgments

of complexity are closely related to decisions about when to defer, and also that these

two types of deference are closely related to each other.

Given that all three scales were strongly correlated with each other, and given that we

have proposed that there may be bidirectional influence between deference and complex-

ity metadata, we sought to determine whether the relationship between complexity and

deference was more related to one or the other of our deference scales. To examine this,

we conducted partial correlations of complexity judgments with each deference scale

while controlling for the other.

For adults, complexity was strongly and significantly correlated with FIX when USE

was controlled for, r = .689, p = .005, but the correlation between complexity and USE

when FIX was controlled for was non-significant r = .345, p = .207. This indicates that,

for adults, FIX is more central to adults’ understanding of causal complexity, either as a

source of input to mechanism metadata or as a judgment informed by complexity meta-

data.

For children, this was not so. For 7–8-year-olds, the relationship between complexity

and FIX was marginal when USE was controlled for, r = .507, p = .054, and the relation-

ship between complexity and USE was significant when FIX was controlled for, r = .655,

p = .008. This indicates that both deference scales are related to 7–8-year-olds under-

standing of causal complexity. For 9–10-year-olds the relationship between complexity

and FIX was not significant when USE was controlled for, r = �.027, p = .923, but the

relationship between complexity and USE was still significant when FIX was controlled

Table 2

Cronbach a and single-measure ICCs (in parentheses) from Experiment 1

Complexity FIX USE

7–8-year-olds 0.841 (0.249**) 0.895 (0.346**) 0.812 (0.213**)

9–10-year-olds 0.843 (0.251**) 0.916 (0.406**) 0.735 (0.148**)

Adults 0.924 (0.431**) 0.950 (0.545**) 0.706 (0.131**)

**p < .01.
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for, r = .745, p = .001. This is an inverse of the pattern found with adults, suggesting

that for 9–10-year-old children, USE is the more central form of deference in relation to

causal complexity.

However, examining each age group alone does not give us insight into whether these

results represent a significant shift in the relationship between complexity and different

forms of deference between age groups. It is possible to convert correlation coefficients

into Z scores by using Fisher transformations, and from those Z scores, conduct a z-test
comparing them (e.g., Yu & Dunn, 1982).

We examined, post hoc, whether the partial correlations above differed between age

groups, resulting in six comparisons (all three possible pairs of age groups for each par-

tial correlation). This revealed only one significant difference: The partial correlation

between complexity and FIX, controlling for USE, was significantly greater for adults

than 9–10-year-olds, p = .026. However, there was no significant difference between

these groups in the partial correlation between complexity and USE when FIX is con-

trolled for (p = .126), and no differences between the 7–8-year-old group and any other

group (all ps ≥ .135).

In short, there seems to be a change in the relationship between complexity and defer-

ence between older children and adults, suggesting that USE is central to the relationship

between complexity and other forms of deference in 9–10-year-olds, but not in adults.

Future studies with a greater number of items (and therefore greater power) might

uncover further significant differences between age groups.

2.2.3. Developmental differences in complexity judgments
One key question concerns how the sense of complexity changes over development.

The above analyses suggest a shift in the relationship between complexity and deference,

but do not give insight into changes in the sense of complexity in itself. There are two

key questions that we wished to address: First, are some age groups more internally con-

sistent than others? That is, do adults have a more consistent sense of complexity than 7-

or 9-year-olds? Second, independent of the first question, do children and adults rate dif-

ferent things as being complex?

With regard to the first question, Cronbach’s alphas can be compared given the alpha,

number of raters, and number of items, by computing a confidence interval for each alpha

and conducting a chi-square test (Feldt, Woodruff, & Salih, 1987). This technique is

implemented in R’s cocron package (available in R or as a web-based interface; Dieden-

hofen & Musch, 2016). For judgments of complexity, this analysis revealed no significant

between-group differences in the magnitude of alpha, v2(2) = 3.47, p = .18. The 95%

confidence intervals of alpha for each age group are provided in Fig. 2.

The second question is more challenging to address. Simple comparisons of means

could use items as a factor with 16 levels and, crossed with three age groups, have almost

as many free parameters as participants, which would violate many assumptions of a stan-

dard ANOVA and create an unreasonable number of multiple comparisons. Yet collapsing

items together is likely to disguise item effects, and we do expect there to be differences

between items. The most straightforward solution is to fit a linear mixed effect model to
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complexity ratings that includes subject as a random factor and treats age group and item

as fixed factors, with each individual rating as an observation. This allows one to deter-

mine if there is an interaction between item and age group, which would indicate that dif-

ferent ages rated different items as more or less complex.

Using R’s afex package (Singmann et al., 2016), we fitted complexity ratings to a lin-

ear mixed effect model with age group and item as fixed factors and subject as a random

factor, and then conducted an F-test on the fixed effects and interactions to determine if

there was a significant interaction between age and item.2 This analysis identified no sig-

nificant main effect of age group, F(2, 422.7) = 4.19, p = .13, a significant main effect of

item, F(15, 945) = 53.33, p < .001, and critically, a significant interaction between item

and age group, F(30, 945) = 1.87, p = .003. This interaction indicates that different age

groups considered different items to be complex.

To explore this interaction further, we computed least-square means contrasts between

age groups for each item using R’s lsmeans package (Lenth, 2017). In essence, this

allows us to conduct pairwise comparisons between age groups for each item indepen-

dently, but it does so on the basis of model predictions that are corrected for the influence

of subject and main effects. These comparisons used Tukey-corrected p-values for 48

contrasts. The full set of comparisons can be found in the supplementary online materials.

To summarize, adults significantly differed from 7- to 8-year-olds on seven items: Tele-

phone, TV, Camera, Car, X-ray, Microphone, and Submarine, all ps ≤ .02. Adults signifi-

cantly differed from 9-10-year-olds on three items: TV, Telephone, and Car, all ps ≤ .02.

Notably, 7–8-year-olds did not differ significantly from 9- to 10-year-olds on any items,

all ps > .05. In other words, adults differed from children in what objects they regarded

as more or less complex, but within the age range of 7–10, children did not differ from

each other.
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A
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Fig. 2. Cronbach’s alphas for complexity ratings in each age group in Experiment 1. Error bars represent

95% CIs.
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2.3. Discussion

Experiment 1 showed that children ages 7–10 and adults make highly consistent judg-

ments of causal complexity, at least within their own age groups. On its own, this is a

striking result. Previous work has consistently found that adults have little or no detailed

understanding of how causal systems like these actually work (e.g., Lawson, 2006;

Rozenblit & Keil, 2002), and children even less so (Mills & Keil, 2004). Even if some of

our participants had more extensive knowledge of some of these causal systems, it is

implausible that they all would. As such, these results provide initial evidence that these

complexity judgments reflect a form of mechanism metadata, by demonstrating high con-

sistency across individuals.

In addition, Experiment 1 demonstrated that complexity is indeed related to decisions

about when to defer to experts, though we did not establish a direction of influence. How-

ever, we did find preliminary evidence for an intriguing shift between middle childhood

and adulthood in how complexity relates to deference: The relationship between complex-

ity and FIX was mediated by USE in older children, but not in adults. This suggests that

the relationship between different forms of deference and complexity data changes

between ages 9–10 and adults, and that USE may play a more central role for children.

Intuitively, this makes some sense: Children often need help using devices, but they are

rarely called upon to fix them. Alternatively, such USE information may be more readily

available to children than internal mechanism information, and it would therefore be more

likely to inform complexity metadata. This opens opportunities for future work exploring

the direction of influence and whether USE is in fact a more relevant form of deference

for children than FIX.

Finally, Experiment 1 provided evidence that what is seen as complex may shift

between children and adults. The results revealed disagreements between children and

adults for a handful of items (notably TV, Telephone, and Car), but give no information

as to why these particular items should differ between children and adults. More system-

atic work will be needed to determine whether these differences are reliable and the

underlying principles behind them. However, it is important to first establish that these

complexity judgments do in fact reflect our definition of mechanism metadata.

3. Experiment 2

Experiment 1 showed that a sense of causal complexity is related to decisions about

when help is needed, but this sense of complexity itself requires further exploration. In

particular, we proposed that this sense of complexity is a form of mechanism metadata

and defined a set of properties that we expect it to possess. Experiment 1 showed that it

has at least one of these properties (consistency among individuals exposed to similar

amounts and types of mechanism information). A second critical property concerns its

applicability to a wide range of causal systems. Notably, this is something that should

distinguish complexity from FIX and USE judgments. USE would be difficult to apply to

J. F. Kominsky, A. P. Zamm, F. C. Keil / Cognitive Science (2017) 17



many biological causal systems, as would FIX in some cases. Therefore, in Experiment

2, we once again asked participants to judge the causal complexity of different causal

systems, but we added a set of items from a very different domain: human body parts.

We predicted that people should be just as consistent in their complexity ratings for these

items as they were for the items used in Experiment 1.

Furthermore, one could argue that the consistency found in Experiment 1 does not

reflect any kind of general metadata but instead a series of ad hoc comparisons across the

particular items we used. We are definitely not suggesting that this metadata knowledge

is stored in the form of a 100-point scale, but at the same time, it should be more general

and stable than a series of ad hoc comparisons. We expect that people have a sense of

how complex a causal system is even when no other systems are presented to compare it

to, and that it is the same sense of complexity independent of what other items are avail-

able for comparison. If it were only comparisons between specific causal systems, we

should expect these ratings to be prone to powerful context effects; that is, they would

change if items were presented together in different combinations. Therefore, in addition

to testing whether these complexity ratings can be applied to different causal systems, in

Experiment 2 we also tested whether presenting the new body part items and the device

items used in Experiment 1 in mixed lists or separate lists would change the consistency

of the complexity judgments or in fact change the judgments themselves.

3.1. Methods

3.1.1. Participants
We recruited 42 workers from Amazon Mechanical Turk who did not participate in

Experiment 1, for modest monetary compensation. The goal was to get 20 for each condi-

tion, with the two extra participants recruited due to experimenter error.

3.1.2. Stimuli and procedure
Using the same methods and dataset as Experiment 1, we extracted the 16 most com-

monly mentioned body parts from the CHILDES database. In addition, we used the same

16 device items from Experiment 1.

Participants were randomly assigned to one of two context conditions, “separate” and

“mixed.” In both conditions, participants were given the same instructions as adults in

Experiment 1’s complexity condition. However, rather than the items being presented one

at a time, they were presented in groups of 16, so each participant only saw two pages

worth of items. In the separate condition, one page had the 16 device items, and the other

had the 16 body part items, so that items in each domain were only seen on the same

page with other items in the same domain. In the mixed condition, we randomly selected

8 items from each domain (using random.org) to make a list of 16 items, with the other

list simply being the other 8 items from each domain. Thus, in the mixed condition, each

item was on a page with items from its own domain and the other domain. The two

“mixed” lists can be found in Table 3. Within each page, the items were presented in

random order, and the order of pages was randomized between participants.

18 J. F. Kominsky, A. P. Zamm, F. C. Keil / Cognitive Science (2017)



3.2. Results

We excluded any participants who failed to use the scale, operationalized as a standard

deviation of less than 10 in either domain (regardless of condition). This excluded a total

of 8 participants, 5 for having a standard deviation of less than 10 in the body parts

domain, 2 for having a standard deviation of less than 10 in the device domain, and 1 for

having a standard deviation of less than 10 in both domains. These results therefore

report data from 34 participants in total, 18 in the separate condition and 16 in the mixed

condition. Means for each item in each condition are presented in Fig. 3.

3.2.1. Context effects
To examine whether context impacted ratings, we once again fit a linear mixed-effect

model to complexity ratings, with list condition and item as fixed factors and subject as a

random factor. This analysis found a significant main effect of item, F(32, 992) = 11.96,

p < .001, no significant effect of condition (b1 = �2.65, SE = 8.65), F(1, 121.69) = 0.09,

p = .76, and no significant interaction between item and condition, F(31, 992) = 0.84,

p = .72. However, a null effect is not necessarily evidence in favor of the null hypothesis,

and in this case it would be useful to have stronger evidence that the condition X item

interaction is not a significant predictor of rating. It is possible to generate a Bayes factor

for a linear mixed effect model using R’s BayesFactor package and the generalTestBF

function (Morey, Rouder, & Jamil, 2015). The BF01 for a given term in the model is the

posterior likelihood that the data were generated by a model in which that term was not a

significant predictor. This analysis revealed the Bayes factor for the null hypothesis to be

BF01 = 4120.95, indicating that the null hypothesis (that the condition X item interaction

Table 3

Stimuli in “mixed” list condition from Experiment 2

Page A Page B

Arm Finger

Eye Elbow

Heart Hair

Nose Knee

Teeth Shoulder

Throat Skeleton

Thumb Tongue

Toe Blood

Airplane Car

Camera Clock

Flashlight Microphone

Radio Microscope

Stereo Scooter

Submarine TV

Telephone Truck

Vacuum cleaner X-ray machine

Note. The order of pages and the order of items within each page were randomized.
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Fig. 3. (a and b) Complexity ratings from Experiment 2 for body parts (a) and devices (b), each in order of

mean complexity rating in the Mixed condition. Error bars represent � 1 SEM.
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had no effect on ratings) is over 4,000 times more likely than the alternative (that the

interaction did have an effect on ratings).

3.2.2. Scale reliability
Cronbach’s a and single-measure ICCs are presented in Table 4, examined separately

by condition and domain, but also combined across both dimensions. Reliability was

extremely high in every possible subset, with all alphas greater than 0.9 and all ICCs sig-

nificantly greater than 0 at p < .001. In short, participants in this experiment were highly

consistent in their ratings of the complexity of these items, regardless of the domain of

the item or the context in which the item was presented.

3.3. Discussion

This sense of causal complexity fits our account of mechanism metadata well. It

applies just as easily to items in the domain of body parts as it does to artifacts, and the

context in which the items are presented has no detectable impact on judgments of their

causal complexity.

This expansion into the domain of biological systems does introduce complications into

the findings of Experiment 1. In particular, it is difficult to say how the types of deference

we investigated might map on to the domain of biology. One could maybe “fix” body parts,

in a sense, but it is far more difficult to find an analogous question to how one might “use”

body parts. On the basis of the correlations reported in Experiment 1 (with no clear evidence

of directionality), this raises the possibility that children might have a different understand-

ing of the complexity of body parts, or no understanding at all. However, if this sense of

causal complexity is truly a form of mechanism metadata, then it should not matter that it is

not applicable to one particular form of deference. Rather, children should just as easily

have access to metadata about biological causal systems, though it is still possible that their

sense of the causal complexity of biological systems differs from that of adults.

4. Experiment 3

Experiment 3 asked whether children’s understanding of causal complexity extends to

biological causal systems. In addition, Experiment 1 found that even 7-year-olds show a

Table 4

Cronbach a and single-measure ICCs (in parentheses) from Experiment 2

All Items Body Parts Devices

Separate lists 0.976 (0.556**) 0.971 (0.673**) 0.953 (0.561**)

Mixed lists 0.956 (0.405**) 0.910 (0.386**) 0.941 (0.498**)

Combined 0.968 (0.483**) 0.952 (0.552**) 0.946 (0.524**)

**p < .01.

J. F. Kominsky, A. P. Zamm, F. C. Keil / Cognitive Science (2017) 21



consistent sense of causal complexity, but earlier work has demonstrated both that the

search for mechanism knowledge starts much earlier than 7 years of age (e.g., Hood &

Bloom, 1979), and that younger children are adept at navigating the division of cognitive

labor in a way that implies sensitivity to some forms of mechanism metadata (e.g., Lutz

& Keil, 2002). Therefore, we might expect this sense of causal complexity to be present

at earlier ages as well. So, in this experiment, in addition to seeing whether older chil-

dren’s complexity judgments extended to the domain of human body parts, we examined

whether a sense of complexity is present in 5–6-year-old children and if it is different

from that of older children or adults.

4.1. Methods

4.1.1. Participants
We recruited 24 adults from Amazon Mechanical Turk who had not participated in previ-

ous experiments. Adult participants received modest monetary compensation for a roughly

10-min experiment. For our child age groups, we recruited 29 5–6-year-old (18 male, 11

female), 25 7–8-year-olds (34 male, 46 female), and 22 9–10-year-olds (13 male, 9 female)

from elementary schools in neighboring towns as well as two local children’s museums. All

child participants were rewarded with a certificate of appreciation and a small toy.

4.1.2. Stimuli
For adults, the items were the same as in Experiment 2. For children, we took the 8

items from each domain that appeared most frequently in CHILDES. These are the items

starred in Table 1.

4.1.3. Procedure
The procedure was identical to that of the complexity rating condition of Experiment

1, except for the new stimuli.

4.2. Results

We applied the same exclusion criteria as in previous experiments, and excluded any

participants with a standard deviation of less than 10 in either domain. This excluded four

adults, nine 5–6-year-olds, five 7–8-year-olds, and two 9–10-year-olds. We replaced

excluded participants until we had 20 in each age group. For the adults, we examined

both the full set of 32 items used in Experiment 2, and the subset of 16 items that were

presented to children in this experiment. For reliability, we report values for both sets of

items. For comparisons between age groups, we only examine the 16 items seen by all

age groups in this experiment. Results can be found in Fig. 4.

4.2.1. Scale reliability
Reliability results are presented in Table 5. As in Experiment 1, 7–10-year-old children

and adults showed a great deal of consistency with others their own age, though 9-10-year-
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olds slightly less so (but still above the 0.7 threshold with highly significant ICCs). How-

ever, while 5–6-year-olds had an alpha just above 0.7 when items from both domains were

examined, they showed subthreshold consistency when each domain was examined sepa-

rately. Given that alpha as a measure is affected by the number of items, alphas for smaller

numbers of items from the same scale will typically be lower (though not always, see the 9–
10-year-olds). Nonetheless, 5–6-year-olds showed significant (but small) single-measure

ICCs. Overall, this pattern suggests that younger children do have a sense of causal com-

plexity, but perhaps less robustly than older children or adults (but see below).

4.2.2. Developmental differences
As in Experiment 1, there are two key questions. First, whether there is a difference in

the internal consistency of some age groups relative to others. Second, whether there are

differences in what is seen as complex.

Using the same analysis as Experiment 1, we conducted a chi-square test of the effect

of age group on the alphas for the full 16-item scale. This analysis revealed a significant

effect of age, v2(3) = 8.03, p = .045. The alphas and 95% CIs are presented in Fig. 5.

Post hoc pairwise comparisons found that 5–6-year-olds were significantly less consistent

than 7–8-year-olds, v2(1) = 5.26, p = .022, and marginally less consistent than adults,
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v2(1) = 2.92, p = .088, suggesting that the 5–6-year-olds’ sense of complexity was less

robust than those of (some) older children and adults. Surprisingly, 9–10-year-olds were

also significantly less consistent than 7–8-year-olds in this experiment, v2(1) = 4.63,

p = .03. No other comparisons were significant (all ps > .1). The high consistency of 7–
8-year-olds is similar to Experiment 1, but the lower consistency of 9–10-year-olds is

unexpected. However, none of these effects are very strong, and Fig. 5 makes clear that

the 95% CIs are quite broad. Future work examining differences in consistency between

age groups may benefit from greater power, both in number of participants and number

of items.

To examine differences in what items were seen as complex, we fit a linear mixed

effect model to the complexity ratings with age group and item as fixed factors and sub-

ject as a random factor. This analysis found a significant main effect of age group, F(1,
646.28) = 4.41, p = .004, a significant main effect of item, F(15, 1140) = 9.10, p < .001,

and a significant interaction, F(45, 1140) = 2.17, p < .001.
As in Experiment 1, we then conducted least-square means pairwise contrasts of the

effect of age group on each item. The only significant contrasts were between 5- and 6-year-

olds and older age groups: 5–6-year-olds differed from 7-8-year-olds in their ratings of Sub-

marine, Car, Airplane, and TV; from 9-10-year-olds in their ratings of Car and Airplane;

Table 5

Cronbach a and single-measure ICCs (in parentheses) from Experiment 3

All Items Body Parts Devices

5–6-year-olds 0.726 (0.142**) 0.675 (0.206**) 0.528 (0.123**)

7–8-year-olds 0.914 (0.398**) 0.869 (0.452**) 0.841 (0.398**)

9–10-year-olds 0.746 (0.155**) 0.764 (0.288**) 0.776 (0.303**)

Adults (kid items) 0.883 (0.319**) 0.903 (0.538**) 0.854 (0.422**)

Adults (all items) 0.932 (0.300**) 0.959 (0.592**) 0.901 (0.362**)

** p < .01.

0.5
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0.7

0.8

0.9

1.0

Adults9-year-olds7-year-olds5-year-olds
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Fig. 5. Cronbach’s alphas for each age group in Experiment 3. Error bars represent 95% CIs.
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and from adults in their ratings of Eye and Airplane, all ps ≤ .033. Older children and adults

did not differ significantly from each other on any items, all ps > .2.

It is surprising that there were no differences between older age groups, given the

results of Experiment 1. There are two major differences between this experiment and

Experiment 1: the inclusion of 5–6-year-olds, and the items themselves (replacing eight

device items with body part items). We therefore conducted two post-hoc analyses to

attempt to determine whether these changes to the experiment could explain the differ-

ence in the results.

Perhaps including 5–6-year-olds somehow masked the age differences between the

groups we examined in Experiment 1, if nothing else by increasing the number of pair-

wise comparisons from 48 to 64, thereby making the corrected p-values that much more

conservative. This is quite trivial to test, we simply fit another linear mixed-effect model

and excluded the 5–6-year-old group, thereby performing the exact same comparison that

we performed in Experiment 1, but with new items and new participants. This analysis

revealed no effect of age group, F(2, 388.67) = .10, p = .91, a main effect of item, F(15,
855) = 11.60, p < .001, and only a marginally significant interaction, F(30, 855) = 1.46,

p = .054. Pairwise comparisons with this more restricted sample found no significant con-

trasts, all ps ≥ .11. Therefore, merely including the 5–6-year-olds does not explain the

discrepancy with Experiment 1.

To verify that changing the items did not also change the ratings, we compared ratings

of the eight items that appeared in both Experiment 1 and Experiment 3 across experi-

ment, in the three age groups that were in both experiments, using a linear mixed-effect

model with experiment and item as fixed factors and subject as a random factor. In all

three age groups, there was a main effect of item, ps < .001, no main effect of experi-

ment, ps > .14, and critically, no interaction, ps > .14. In other words, there was no indi-

cation that ratings of the device items changed in any age group as a result of the

different set of items, which aligns with the results of Experiment 2.

These analyses suggest that this is simply a non-replication of the developmental

effects we found in Experiment 1 due to type-II error (or Experiment 1’s results were

due to type-I error, though by Experiment 1’s p-values this is by definition unlikely).

However, further work will be needed to establish whether there are robust differences in

complexity judgments between age groups.

4.3. Discussion

Children ages 7–10, much like adults, have a sense of complexity for biological causal

systems as they do for artifact causal systems. Younger children, 5–6 years of age, also

show a similarly consistent sense of causal complexity, though marginally less robust

than that of older children and adults. Again, these results alone are remarkable. It would

have been entirely reasonable to expect that children would have difficulty providing con-

sistent ratings for items across such radically different domains, especially domains for

which some forms of deference information may not apply. These results further indicate
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that causal complexity fits our definition of mechanism metadata, applying universally

across very different domains.

Children ages 5–6 differed from older children and adults in what items they regarded

as being more or less complex. However, we failed to replicate the differences found in

Experiment 1 for what is seen as complex among older children and adults, for reasons

that are as yet unclear. It could be as simple as type-II error, or it could be something

about the inclusion of body part items that changes ratings across age groups, though our

analyses suggest that the latter is unlikely. In either case, the solution will be for future

work to test specific hypotheses about how these judgments of complexity might differ

between ages, and which items are or are not likely to highlight such differences. While

our results leave some intriguing puzzles, our primary goal was to establish the existence

of complexity as a form of mechanism metadata across middle childhood and adulthood,

and for that goal Experiment 3 is successful.

5. General discussion

How do you know that you would need help to repair a jet engine, without knowing

how a jet engine works? In three experiments, we suggested that children ages 7–10 (and

perhaps as young as 5) and adults have a sense of causal complexity that is closely

related to such decisions. We provide evidence that this sense of causal complexity is a

form of mechanism metadata that is highly consistent across individuals with similar

levels of exposure to mechanism information, and broadly applied to many different cau-

sal systems across different ontological domains. The current work provides just the first

stage of empirical support for the existence of mechanism metadata, and many future

studies are needed to work out the details. However, these studies do demonstrate that

both adults and children have strong intuitions about causal complexity despite lacking

the supporting mechanistic details.

The relationship between complexity and deference is intriguing, and seems to change

over development. In particular, “help needed to use” seems to be related to complexity

in a different way for older children and adults, in that USE seems to mediate relation-

ship between complexity and other forms of deference for 9–10-year-old children, but not

at all for adults. It is not that internal mechanism information is irrelevant to these chil-

dren’s sense of complexity, however. Their judgments of complexity are just as consistent

for domains in which “help needed to use” is a nonsensical question. Yet, in their day-to-

day lives, children may simply have little need or opportunity to fix things, but do often

need help using things.

More broadly, the direction of the relationship between complexity and deference may

simply be a matter of what kind of information is available for a given causal system. If

children have no information about internal mechanism, but know they need help to use

something, they may base complexity judgments on that information. If they know some-

thing about how a causal system works but have no personal experience trying to use it
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or fix it, their sense of complexity could inform decisions about whether they would need

help.

We also found preliminary evidence that this sense of causal complexity changes over

the course of middle childhood and into adulthood. At 5–6 years of age, children are

capable of making complexity judgments but are slightly less consistent than 7–8-year-
old children and adults. If this difference in consistency proves to be robust, it could

indicate more idiosyncratic exposure to mechanism (or other) information, or it

could indicate that the cognitive architecture to extract mechanism metadata is not well-

developed at this age. Both of these factors likely contribute, but consideration of

previous work favors the idiosyncratic exposure interpretation. Children as young as 4

make consistent judgments of relative complexity in forced-choice tasks on the basis of

information about the behavior of a given mechanism (Ahl & Keil, 2016; Erb et al.,

2013). In those studies, children were explicitly provided with standardized information

about a causal system. When they were all exposed to the same information, they were

relatively consistent in their complexity judgments (and in what kinds of information

they used to determine complexity).

These previous studies suggest that some of the cognitive tools for extracting mecha-

nism metadata are present by age 5, and the developmental changes in consistency that

we observe in Experiment 3 could reflect something about the information they receive

and not the conclusions they draw from it. Prior to the standardized curricula of the

school years, the amount and type of mechanism information children encounter may

depend heavily on their parents or siblings, both in their tendency to provide mechanism

information and in the kinds and quality of mechanism information provided. Thus, there

may simply be huge variations in the kind of information children receive (e.g., Callanan

& Oakes, 1992).

It is less clear whether there are developmental differences in which causal systems

are judged to be more or less complex. Experiment 1 found a strong developmental dif-

ference in the ratings of certain items between children and adults, but the child groups

did not differ from each other. However, we failed to replicate this result in Experiment

3 with the same ages (though 5–6-year-olds did differ from older children and adults). In

all likelihood, if such differences do exist, they will depend heavily on the specific causal

systems in question. For example, consider the ratings of the “flashlight” item, which

appeared in every experiment: Every age group in every experiment provided very similar

ratings, between 15 and 30 on our 100-point scale. Future work exploring developmental

differences in judgments of causal complexity would probably want to avoid using “flash-

light” as one of the items. On the other hand, causal systems like “car” or “eye” seem to

show more variability. Ultimately, we will need a more detailed theory of how exactly

this complexity metadata is constructed for different causal systems, and how the input or

the processing of that input might change over development, before we can make clear

predictions about when children and adults will disagree.

In addition, a further alternative exists for any of these developmental effects: There

could be a large shift in the kind of mechanism metadata children and adults acquire, but

due to a cohort effect rather than cognitive development. Artifacts that children currently

J. F. Kominsky, A. P. Zamm, F. C. Keil / Cognitive Science (2017) 27



encounter typically are made of opaque electronics, whereas adults may have had more

experience with systems that had more visible mechanical and electrical parts, or at least

parts that could be more readily accessed and manipulated. While we did not collect age

data from the adult participants, the average age of workers on Amazon Mechanical Turk is

approximately 32 (Mason & Suri, 2012). With an age gap of 22 years between the average

age of the MTurk sample and our oldest child participants, perhaps today’s adults had a gen-

uinely different experience of internal mechanism during development. Thus, the question

arises as to whether adults in 10–20 years will show the same judgments as adults do now.

5.1. Mechanism metadata

While we set out to understand decisions about when to seek help, the idea of mecha-

nism metadata can be applied much more broadly. As noted previously, existing work on

the division of cognitive labor has indirectly provided evidence for the existence of a few

different kinds of mechanism metadata. Here, we have done more than provide a conve-

nient label for describing this kind of knowledge, we have made concrete proposals for

what properties we should expect mechanism metadata to have. In particular, the two key

features that we proposed and tested here are consistency within a population and univer-

sal applicability. More broadly, we have suggested that mechanism metadata can help

resolve the seeming contradiction of the early-developing search for mechanism informa-

tion, and the absence of such information even in adults.

In this project we have primarily demonstrated the existence of a particular form of

mechanism metadata and laid out a set of properties that we expect to be shared by all

forms of mechanism metadata. We have suggested the existence of other forms of mecha-

nism metadata, some based on existing work (e.g., ontological category; Lutz & Keil,

2002) and some that are ripe for further exploration (e.g., approximate causal structure;

Strickland, Silver, & Keil, 2017). We also provided evidence that mechanism metadata is

closely related to deference, and even particular types of deference that have seldom been

explored before.

Several questions remain, however. For example, does mechanism metadata guide

what level of expertise you seek out? Could you ask a medical student or would you need

to ask a doctor? These sorts of questions are important to our understanding of how we

navigate the division of cognitive labor.

Another set of questions address our understanding of mechanism information, and

information about causal systems more generally. We did not directly examine how chil-

dren and adults acquire a sense of complexity in this set of experiments. Such a study

would require manipulating the information children and adults are exposed to, while we

were interested in what they already knew about everyday things in the world. What

kinds of information are needed to extract this metadata, and what elements of that infor-

mation actually inform the content of the metadata? With regard to complexity, Ahl and

Keil (2016) found that young children use information about the number of functions a

(fictional) device can complete to gauge its complexity (see also Erb et al., 2013), and by

age 6 they will also use the diversity of functions as a cue to complexity (e.g., a device
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that picks two kinds of flowers is simpler than one that picks flowers and berries). Nota-

bly, these studies indicate that mechanism information is not actually necessary to extract

some forms of mechanism metadata, behavior is sufficient. However, as these studies

were forced choice, they might not have led to the same general sense of complexity we

find in our experiments. It seems likely that some categories of behavior would lead to

inferences of greater or lesser complexity, but what aspects of those behaviors are rele-

vant, or what you need to know about those behaviors, merits further investigation.

Finally, while we feel we have provided strong evidence for the existence of mecha-

nism metadata, there are two ways one could describe mechanism metadata, and our

results do not clearly distinguish between them. One view would be that this mechanism

metadata is how information is represented in memory. That is, when we asked partici-

pants for complexity ratings, they accessed a stored magnitude-like representation of

complexity that they already possessed for each of these causal systems and applied it to

our 100-point scale. Alternatively, complexity metadata may not be represented in mem-

ory but constructed on demand from fragments of information that are. That is, when

asked how complicated a causal system is, we access a set of fragmentary knowledge

about that causal system and apply some generative process to it that produces our judg-

ment of causal complexity.

Both possibilities are compatible with our definition of mechanism metadata. Either

way, we have to propose some cognitive process that is highly consistent across individu-

als. The question is simply whether that process takes place during encoding or only

when required to address a question. In fact it would be extremely difficult to distinguish

these possibilities, but it is also not necessary to do so to conduct further investigations

of mechanism metadata and deference. Investigating what types of information influence

complexity or other forms of metadata does not require knowing whether that metadata is

formed immediately on encoding or only constructed later, and we will gain insight into

the underlying process either way.

6. Conclusion

Children and adults have the remarkable ability to know a great deal about a causal

system while simultaneously knowing very little. They know when to find expert knowl-

edge and where to look for it on the basis of few and fragmentary details, supported by

(and perhaps supporting) a rich library of metadata knowledge. The properties of this

mechanism metadata, and the cognitive processes that support it, are a rich avenue of

future exploration, to better understand how we navigate a complex causal world.
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Notes

1. We divided the age ranges into 7–8 and 9–10 to provide comparable age compar-

isons to previous studies of children’s understanding of the division of cognitive

labor (e.g., Danovitch & Keil, 2004; Keil et al., 2008). In this experiment, there

were no differences between these two age groups, and post hoc analyses collaps-

ing both child age groups generated results qualitatively identical to the ones

reported here.

2. Note that there is still some debate in the statistics community as to how best to

determine the degrees of freedom for these F-tests (see https://cran.r-project.org/

web/packages/lme4/lme4.pdf [retrieved 1/26/17], pg. 91). In the absence of a per-

fect solution, we have opted for a commonly used one that at least gives an inter-

pretable answer. Notably this analysis treats the number of observations as subjects

* items rather than number of subjects, which both licenses its use in Experiment 2

(in which there would be more free factors than number of subjects otherwise) and

explains the high estimated degrees of freedom.
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